Efficient time domain threshold for sparse channel estimation in OFDM system

نویسندگان

  • Hui Xie
  • Guillaume Andrieux
  • Yide Wang
  • Jean-François Diouris
  • Suili Feng
چکیده

A novel efficient time domain threshold based sparse channel estimation technique is proposed for orthogonal frequency division multiplexing (OFDM) systems. The proposed method aims to realize effective channel estimation without prior knowledge of channel statistics and noise standard deviation within a comparatively wide range of sparsity. Firstly, classical least squares (LS) method is used to get an initial channel impulse response (CIR) estimate. Then, an effective threshold, estimated from the noise coefficients of the initial estimated CIR, is proposed. Finally, the obtained threshold is used to select the most significant taps. Theoretical analysis and simulation results show that the proposed method achieves better performance in both BER (bit error rate) and NMSE (normalized mean square error) than the compared methods, has good spectral efficiency and moderate computational complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation

The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...

متن کامل

Channel Effect Compensation in OFDM System under Short CP Length Using Adaptive Filter in Wavelet Transform Domain

Channel estimation in communication systems is one of the most important issues that can reduce the error rate of sending and receiving information as much as possible. In this regard, estimation of OFDM-based wireless channels using known sub-carriers as pilot is of particular importance in frequency domain. In this paper, channel estimation under short cyclic prefix (CP) in OFDM system is con...

متن کامل

Channel Estimation and CFO Compensation in OFDM System Using Adaptive Filters in Wavelet Transform Domain

Abstarct In this paper, combination of channel, receiver frequency-dependent IQ imbalance and carrier frequency offset estimation under short cyclic prefix (CP) length are considered in OFDM system. An adaptive algorithm based on the set-membership filtering (SMF) algorithm is used to compensate for these impairments. In short CP length, per-tone equalization (PTEQ) structure is used to avoid i...

متن کامل

Time-Varying Frequency Fading Channel Tracking In OFDM-PLNC System, Using Kalman Filter

Physical-layer network coding (PLNC) has the ability to drastically improve the throughput of multi-source wireless communication systems. In this paper, we focus on the problem of channel tracking in a Decode-and-Forward (DF) OFDM PLNC system. We proposed a Kalman Filter-based algorithm for tracking the frequency/time fading channel in this system. Tracking of the channel is performed in the t...

متن کامل

Evaluation Performance of OFDM Mutlicarrier Modulation over Rayleigh and RicianStandard Channels Using WPT-OFDM Modulations

Last years, Wavelet Packet Modulation (WPM) or Wavelet Packet Transform based Orthogonal Frequency Division Multiplexing (WPT-OFDM) have been introduced to wired and wireless communication fields as efficient Multicarrier Modulation (MCM) techniques. The wavelets have interesting features such as flexibility, compatibility and localization in both time and frequency domains with no need to use ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017